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Analysis of x-ray and neutron reflectivity is usually performed by modeling the density profile of the sample
and performing a least square fit to the measured �phaseless� reflectivity data. Here we address the uniqueness
of the reflectivity problem as well as its numerical reconstruction. In particular, we derive conditions for
uniqueness, which are applicable in the kinematic limit �Born approximation�, and for the most relevant case
of box model profiles with Gaussian roughness. At the same time we present an iterative method to reconstruct
the profile based on regularization methods. The method is successfully implemented and tested both on
simulated and real experimental data.
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I. INTRODUCTION

X-ray and neutron reflectivity are well established tech-
niques to study the interface profile ��z� of thin films with
molecular resolution �1,2�. Organic thin films, such as poly-
mer layers �3�, liquid wetting layers �4�, or biomolecular
films �5–7� on solid surfaces are well known examples,
where reflectivity methods are employed. More generally,
reflectivity is an important tool in the structure analysis of
thin films, both in soft and hard condensed matter. In most
applications, some part of ��z� is known, i.e., the solid sub-
strate �e.g., silicon wafer, glass slide, etc.�, while most of the
profile, for example, the polymer film, the lipid membrane,
or the wetting layer is unknown and needs to be elucidated.
In this paper we investigate from a mathematical point of
view to which extent partial information on the profile can be
used to uniquely determine the full profile ��z� of the sample.

Specular reflectivity is the measured intensity R�q� re-
flected in the specular direction �incidence angle equal to the
exit angle� off a planar interface, normalized to the intensity
of the incident beam. Reflectivity is measured as a function
of the incidence angle � or correspondingly the momentum
transfer q=4� /� sin��� normal to the interface. R�q� is
uniquely determined by the laterally averaged scattering
length density profile ��z� normal to the interface. While the
calculation of the R�q� from ��z� is straightforward �the for-
ward problem�, the determination of ��z� from R�q� �the in-
verse problem� is not. At the same time the solution of the
inverse problem would make ambiguous and cumbersome
data fitting obsolete, and would provide a unique scattering
length density depth profile for the thin-film structure, if the
conditions of uniqueness are fulfilled.

Usually, the forward problem to calculate R�q� is carried
out either by solving the Helmholtz equation for stratified
media, i.e., for piecewise constant density profiles ��z� pa-
rametrized by box models �8�, or by solving the kinematic
master equation of reflectivity �9,10�, which is better suited
for smooth profiles and profiles, which cannot easily be pa-
rametrized by box models or which would contain too many
boxes. In the first approach of dynamic reflectivity the cal-
culations are performed, e.g., by use of optical matrices
based on full dynamic theory including multiple reflections.
In the second approach of kinematic reflectivity �correspond-
ing to the Born or weak scattering approximation�, the mea-
surable reflectivity is given by �1�

R�q� = RF�q��r�q��2 �1a�

with the Fresnel reflectivity RF�q� of an ideal interface be-
tween two media with density contrast ��=����−��−�� and
a structure factor r�q�, which is the Fourier transform of the
derivative of �:

r�q� =
1

��
�

−�

�

exp�− iqz����z�dz . �1b�

The inverse problem is therefore reduced to determine the
missing phase information of the complex valued function
r�q�, or in other words to determine the unknown phase in-
formation from the measured intensities plus supplemental
information.

In full dynamic theory, in some cases not even knowledge
of the full complex reflectivity amplitude is sufficient to re-
cover �. By analogy of the Helmholtz equation to the time
independent Schrödinger equation it has been known for a
long time that, if bound states are present, knowledge of the
phase shifts alone is not sufficient for a unique determination
of the potential �11,12�. On the other hand, if no bound states
exist, � can be reconstructed from the complex reflectivity
amplitude by Marchenko inversion �13,14�. The inverse scat-
tering problem is thus quite different for both approaches.
The inversion of dynamic reflectivity has been addressed, for
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example, by Majkrzak, Berk, and co-workers �15�. They
have shown that the complex amplitude for neutrons specu-
larly reflected from a film can be determined exactly through
the use of buried reference layers of finite thickness or by
variation of the incident or substrate medium, i.e., by com-
bination of several measurements using contrast variation.

In certain ideal situations explicit formulas to recover the
missing phase of r exist: If ���z� has compact support, its
Fourier transform r�q� has a holomorphic extension to an
entire function, which by the Hadamard factorization theo-
rem is essentially determined by its complex zeros �� j : j
�N�. Since R /RF has the analytic extension �R /RF��q�
=r�q�r�q̄�, its set of zeros is given by �� j�� �� j�. Therefore,
for a given zero � of R /RF it is not clear, whether � or �̄ is
the corresponding zero of r. However, under certain condi-
tions it can be guaranteed that r has no zeros in the complex
upper half-plane U. Then the missing phase arg r is given
explicitly by the so-called Hilbert-phase �16–18�

rH�q� =
2q

�
�

0

� ln�r�q̃�/r�q��
q̃2 − q2 dq̃ �2�

up to an affine linear function, i.e., arg r�q�=rH�q�+n�
+z0q with a translation z0�R and a sign indication n
� �0,1�. If r does have complex zeros in U, then the addi-
tional knowledge of these zeros also determines arg r
uniquely up to an affine linear term, and these zeros may be
included in correction terms in the phase reconstruction for-
mula above. Variants of Eq. �2� and methods to determine
zeros of r can be used for numerical phase reconstructions
�2,19–23�.

In this paper, we prove a uniqueness result implying iden-
tifiability of box model profiles with Gaussian interfaces if
the sharpest jump is known, and its size is larger than the
sum of all other jumps. Moreover, we extend the inversion
techniques for kinematic reflectivity by proposing an itera-
tive regularization method using a general nonparametric
model of the profile.

The paper is organized as follows. Section II presents a
brief statement of the problem in the framework of kinematic
reflectivity, and the mathematical proof of uniqueness. Sec-
tion III then addresses the numerical implementation of the
forward problem, while Sec. IV is devoted to the ill-posed
inverse problem and its solution by regularization methods.
Finally, Sec. V presents numerical results on real data, before
the paper closes with a short discussion.

II. UNIQUENESS

Obviously, �� is not uniquely determined by R since Eqs.
�1a� and �1b� is also satisfied for the functions � f��z�
= ��

2�	−�
� ei�zq+f�q��r�q�dq with an arbitrary real-valued, measur-

able function f . However, if additional a priori information
on �� is available, it may be uniquely determined by R as the
following result shows.

Theorem 1. Assume that �� is of the form

���z� = �
−�

� 1

2��

e−�z − z̃�2/2�2
�c	z0

�z̃� + h�z̃��dz̃

with known �
0, c�R, and z0
0 and an unknown real-
valued function h�L1�R� with compact support �for �=0
the right-hand side is c	z0

�z�+h�z��. Moreover, assume that
c� �h�L1. Then �� is uniquely determined by the values of
R�q� in Eqs. �1a� and �1b� for q in some interval �0,qmax�.

Proof. Since h has compact support, the function r has a
holomorphic extension to an entire function

r�q� =
1

��
e−��q�2/2�ce−iqz0 + ĥ�q��, q � C .

Moreover, by analyticity R�q� is uniquely determined for all
q�C by the values on �0,qmax�. Assume that r�q�=0 for

some q with Im�q��0. Then �c�� �ce−iqz0�= �ĥ�q��� �ĥ�L1

contradicting our assumption. Therefore, r has no zeros in
the upper complex half-plane, and hence by the results dis-
cussed in the Introduction, �� is uniquely determined by R up
to the sign and a translation, both of which is uniquely de-
termined by the a priori knowledge of c and z0. �

As a particular case we obtain the following uniqueness
result for box models �24�

���z� = �
j=0

M−1
�	�� j


2�� j

e−�z − zj�
2/2�j

2
�3�

with M interfaces with widths � j 
0 and locations zj �R.
Corollary 2. If �	��0 ,�0, and z0 in the box model �3� are

known and the conditions

��	��0� � �
j=1

M−1

��	�� j�, �0 
 min��1, . . . ,�M−1�

are fulfilled, then �� is uniquely determined by R.
Proof. We may apply theorem 1 with c= �	��0, �=�0, and

h�z�=� j=1
M−1 �	�� j


2��̃ j
exp�−

�z−zj�2

2�̃ j
2 �, where �̃ j =
� j

2−�0
2. �

Theorem 1 and corollary 2 imply that for �multilayer�
structures, which contain a known interface of small width
and which are otherwise smooth with variations that are
small compared to the size of the known jump, we can ex-
pect to be able to recover the refractive index uniquely. For
sharp interfaces this has been shown by Clinton �19�.
Uniqueness results for other kinds of a priori information
have been obtain by Klibanov and co-workers �16,25�.

III. DISCRETIZED OPERATOR EQUATION

The measured data can be described by m pairs �qj ,yj
	�

of a deterministic variable qj determined by the experimen-
talist and a random variable yj

	 satisfying

E��yj
	 − �R/RF��qj��2� � 	 j

2, j = 1, . . . ,m , �4�

where E denotes the expected value. We assume that bounds
	 j on the expected errors are provided by the experimentalist.

Moreover, we assume that �� is real-valued such that R is
symmetric. Hence, we can complement our measured data
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vectors by the pairs �−qj ,yj
	�. Furthermore, the point �0,1� is

included in the data vector. Although no measurement at qj
=0 can be performed, the forward Eqs. �1a� and �1b� imply
this point. We further assume that an interval �0,a� contain-
ing the support of �� is known. The unknowns of the dis-
cretized inverse problem will be the values of �� at n equi-
distant points, �l=���la /n�. Approximating the integral in
Eq. �1b� by the trapezoidal rule we obtain

r�q� 

a

n���� �l=0

N−1

exp� ilqa

n
��l, �q̃j� � qmax.

To make this approximation accurate we have to choose n
such that qmaxa /n�1 since in this case the integrand is
slowly varying in l and the trapezoidal rule is very accurate
for smooth periodic functions. We point out that this typi-
cally requires to choose the number n of unknowns much
larger than the number m of data. This poses no problem as
the regularization method discussed below even works for an
infinite-dimensional space of unknowns and finitely many
data.

Defining the auxiliary grid q̃j = j�q with �q= 2�n
aN we ob-

tain

� R

RF
��q̃j� 
 � a

n���� �l=0

N−1

exp�i2�lj/N��l�2

for j=− N
2 , . . . , N

2 −1, and the right-hand side can be computed
efficiently by the fast Fourier transform �F� in O�N ln�N��
operations. �For notational convenience we assume N to be
even.� To make �q sufficiently small, we may have to choose
N
n setting �l=0 for l
n. Since the qj’s are not necessar-
ily equidistant, we use an interpolation matrix J�R2m+1�N

such that

J�� R

RF
��q̃j��

j=−N/2,. . .,N/2−1

 �� R

RF
��qj��

j=1,. . .,2m+1
.

More specifically, we approximate R /RF by the value of the
interpolation polynomial of degree 5 using the six points of
the grid �q̃j� closest to qj. Note that J is a sparse matrix.

Hence, the phase retrieval problem can be written as a
discretized operator equation

F��� = y	 �5�

with the data vector y	= �yj
	� and the mapping F :Rn

→R2m+1 given by F���=Jfsq�FNL��. Here L :Rn→RN is the
mapping, which elongates a vector �� j� j=0,. . .,n by adding N
−n−1 zeros at the end, the mapping fsq :CN→RN is defined
by fsq�v j�= ��v j�2�, and �FN� j,l=a / �n�����exp�i2�lj /N� for j
=−N /2, . . . ,N /2−1 and l=0, . . . , �N−1�.

IV. REGULARIZATION

Since the solution to Eq. �5� is not unique and particularly
in the presence of noise many different profiles � can explain
the data, it is important to incorporate further a priori infor-
mation in the inversion process, e.g., solving the minimiza-
tion problem

�̂ = argmin���F��� − y	�Y
2 + ��� − �0�X

2� �6�

for some regularization parameter ��0 and an initial guess
�0 featuring, e.g., known interfaces. This method is known
as nonlinear Tikhonov regularization �26,27� and can be de-
rived from the perspective of Bayesian statistics by minimiz-
ing the posterior distribution �28�.

For the performance of the method it is crucial to choose
appropriate inner products on X=Rn and Y =R2m+1. Assum-
ing the errors 	 j to be N�0,	 j� distributed and considering the
log-likelihood function leads to the choice �y , ỹ�Y =y�GYỹ
with the Gram matrix GY = �2m+1�−1diag�	1

−2 , . . . ,	2m+1
−2 � and

the corresponding norm �y�Y
2 = �y ,y�Y, i.e., we measure the

data misfit by the weighted sum �y�k�−y	�Y
2 =� j=1

2m+1 �yj
�k�−yj

	�2

�2m+1�	 j
2 .

The choice of the inner product �� , �̃�X=��GX�̃ in X
should reflect the a priori information on the solution. From
a Bayesian perspective this is called prior modeling. Accord-
ing to theorem 1 we expect uniqueness if the largest varia-
tions of �� are known and included in the initial guess �0�
represented by �0. Therefore, ���−�0��L2

2 should be small, and
we can assume ���0�=�0��0� and ���a�=�0��a�.

Approximating the derivative by finite differences and us-
ing the boundary conditions leads to the Gram matrix

G̃X =
n

a�
2 − 1

− 1 2 − 1

� � �

− 1 2 − 1

− 1 2
� .

Moreover, one typically has good a priori knowledge of ��
in a subintervall �� ,��� �0,a�, and it is important to incor-
porate this a priori information into the inversion method.
This can be done by choosing the Gram matrix of the form

GX= G̃X+diag�w1 , . . . ,wn� where wj =1 if ja /n� �� ,�� and
wj =0 else.

Since the solution of the nonconvex minimization prob-
lem �6� may be difficult and since the evaluation of F using
fast Fourier transform is very fast, we have used the Newton
conjugated-gradient �CG� method as an alternative to Eq.
�6�. It consists of solving the Newton equations

F����k�����k� = y	 − F���k�� �7�

for the update ���k�=��k+1�−��k� by the conjugate gradient
method applied to the normal equation �in the following re-
ferred to as “CGNE”� using early stopping as regularization
both for the inner and the outer iteration. The convergence
and regularizing properties of the Newton-CG method were
shown by Hanke �29�. For convenience we recall that the
CGNE method for minimizing the quadratic functional
x� �Tx−y�Y

2 or equivalently the CG method for solving the
normal equation GX

−1T�GYTx=GX
−1T�GYy can be coded as

shown in Fig. 1. T� denotes the transposed matrix, i.e., the
adjoint with respect to the standard inner products, whereas
the adjoint with respect to the inner products �. . . , . . .�X and
�. . . , . . .�Y is given by GX

−1T�GY. �� �0,1� should be consid-
ered a regularization parameter for CGNE with useful value
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�=0.8. The exterior Newton iteration is given by

���k� = fCGNE�y	 − F���k��,F����k��,F����k����

with k=0,1 ,2 , . . . , and ��k+1�=��k�+���k�. Here the deriva-
tive of F at ��k� in direction h�X is given by

F����k��h = 2J Re��FNL��k�� � �FNLh�� ,

where �v j�� �wj�= �v jwj� denotes element-wise multiplication
of two vectors and Re��v j��= �Re�v j�� ��v j�= �v j�� means tak-
ing the real part �complex conjugate� of all entries of a vec-
tor. Moreover,

F����k���y = 2L� Re�FN
� ��FNL��k�� � �J�y��� .

Note that in the Newton-CG method we never have to set up
the typically large and full Jacobian matrices F����k��, since
the matrix-vector products x�F����k��x and y�F����k���y
can be implemented as routines using the last two formulas.
The reconstruction algorithm presented here has been imple-
mented as an open source MATLAB �33� code �34�.

V. NUMERICAL RESULTS

For the reconstruction of an unknown structure, the influ-
ence of two factors on the quality of the reconstructions is of
special interest to the experimentalist: The maximum allow-
able noise level of the data and the minimum amount of
a priori information needed to obtain a physically meaning-
ful and unique profile. The influence of these factors will be
illustrated for selected examples in the following.

In order to elucidate the problem of possible ambiguity in
the obtained reconstructions, the algorithm was first applied
to simulated data, prior to applications to experimental data
from reflectivity measurements of biomolecular films �5,6�.
The simulated data sets were calculated from an exactly de-
fined scattering length density profile ��z�=r0�e�z�, where r0
is the classical electron radius and �e�z� the electron number
density. Recall that the Fresnel reflectivity behaves as

RF�q� = I0� 1 − 
1 − �q

1 + 
1 − �q
�2

� I0
�4��2���er0�2

q4 �8�

as �q= �qc /q�2=4���er0 /q2→0, where qc is the critical
angle of total external reflection and ��e=�� /r0 denotes the
total electron density difference between the substrate and
the bulk phase on top of the sample structure. Note that the
kinematic model of reflectivity �1b� is only valid for angles
q�qc. However, for typical density differences ��e, e.g.,
with silicon as the substrate, often used in biomolecular ap-
plications, and air as the bulk phase, one arrives at qc

�Si/air�


0.031 Å−1, substantially smaller than the highest q- value
typically obtainable even with a laboratory source �qmax

0.4 Å�.

The primary beam intensity I0 was chosen in the range of
106 and 109 photons impinging on the whole sample in all,
thus covering an intensity range from typical fixed-anode
laboratory sources to undulator beamlines at third-generation
synchrotrons �35�. Synthetic data were generated by the for-
mula yj

	=Y j /RF�qj� where the count data Y j �N0 were drawn
from a Poisson distribution with mean R�qj��1+0.02� j� with
independent N�0,1�-distributed random variables � j account-
ing for several inevitable steps in the analysis of reflectivity
data �illumination correction, determination of the critical
angle, etc.�. Because of Eq. �8� the variances 	 j of yj

	 grow
rapidly with qj �see Fig. 4, top right�.

The model used here represents a typical density profile
of a supported lipid bilayer membrane with an aqueous sub-
phase on top of the thin film �5�. As visible in Fig. 2 �top left
graph, dashed blue line�, the silicon substrate is covered with
a native oxide layer of reduced density and a thickness of
about 15.5 Å. The prominent features of the lipid bilayer are
the dense phospholipid headgroup regions, represented as
minor maxima at 20 and 57 Å, as well as the lower-density
hydrocarbon core region around the profile minimum at
around 40 Å. The headgroup-headgroup distance is thus
given as dhh=37 Å, representing a rough estimate for the
thickness of the bilayer.

At first, the algorithm was applied to a problem with a
high signal-to-noise ratio �a synchrotron source of I0=7
�109 is assumed�, see Fig. 2. As the initial input the true,
simulated profile on a small interval around the sharp de-
crease in electron density at the substrate-film interface was
used. This density gradient represents the maximum density
change �	��0 referred to in corollary 2. Although the unique-
ness condition is not strictly fulfilled here, it is shown in the
following that the algorithm yields a very good approxima-
tion of the whole true profile even for wrong initial values of
�	��0. As mentioned in Sec. III, an interval �� ,�� can be
chosen, in which the algorithm is forced to predominantly
follow the initial profile. Here it was placed around the oxide
layer and the beginning of the gradient �	��0 �see the shaded
region in Fig. 2, top left graph�.

As visible in the top left graph of Fig. 2 the reconstruction
�solid red line� fits the true profile used for simulation of the
data �dashed blue line� extremely well, given the nonvanish-
ing noise in the simulated data. Similarly, the corresponding
reflectivity curve �top right graph, red line� matches the
simulated data points very precisely. To illustrate the effect

function fCGNE(y, T, T ∗)

j = 0; x0 = 0; s0 = y; r̃0 = T ∗GY s0; r0 = G−1
X r̃0; d0 = r0;

while (‖sj‖Y > ρ‖s0‖Y and j ≤ 50)

αj = (r∗j r̃j)/‖Tdj‖2
Y ; %r∗j r̃j = ‖rj‖2

X

xj+1 = xj + αjdj;

sj+1 = sj − αTdj ;

r̃j+1 = T ∗GY sj+1; rj+1 = G−1
X r̃j+1;

βj = (r̃∗j+1rj+1)/(r
∗
j rj);

dj+1 = rj + βjdj ;

j = j + 1;

return xj;

FIG. 1. Inner CGNE iteration in the Newton-CG algorithm.
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of “overfitting” the data �see below�, a second reconstruction
is shown �top left graph, dotted black line�, which was ob-
tained after 20 iterations without applying the discrepancy
principle. As shown in the bottom right graph of Fig. 2, the
algorithm converged to a good approximation with a geomet-
ric decrease of �F���k��−y	�Y

2, and was stopped according to
the discrepancy principle after k=9 iterations ��=2.7,�
=0.8�. Further application of the algorithm leads to a discrete
jump in the data and real space profile misfit. While the data
misfit is then recovered �bottom right graph�, the profile mis-
fit does not improve any more �bottom left graph�. Note that
the fit converges to the correct solution, although the a priori
interval �� ,�� of the profile �gray shaded area in Fig. 2, top
left graph� has not been extended to the end of the maximum
gradient �	��0 in the profile.

In a real experiment, the maximum density gradient �	��0
is often known with limited accuracy only, i.e., usually it is
only known that ��	��0� is smaller than the total gradient ����
between substrate and bulk phase. In fact, ���� can be deter-
mined very easily even at laboratory sources by measuring
the critical angle qc and utilizing the equality qc=2
���er0.
To address the problem of the usually unknown maximum
gradient �	��0, the stability of the reconstructions with re-
spect to changes in �	��0 was examined. All conditions for
reconstruction were the same as before, except a change of
the density gradient �	��0 between the oxide layer on top of

the silicon substrate and the water layer usually present be-
tween the substrate and a lipid double layer �5�. In addition,
the stopping parameter � was adjusted to prevent overfitting.
As shown in Fig. 3 �top graph� the quality of the fits in
Fourier space is not substantially decreased by a change in
the gradient ��	��0�. More importantly, the real space recon-
structions do not substantially decrease in quality as well
�bottom graph�. For clarity, the plots of all reconstructed pro-
files corresponding to the data and profile misfit values
shown in Fig. 3 are given as supplemental online material
�34�. This suggests that the algorithm leads to very accurate
solutions under realistic and experimentally relevant condi-
tions.

Using the same parameters �except a value of �=2.5 and
an increased length 33 Å of the interval �� ,��� the algorithm
was also applied to very noisy data, typically obtained with a
laboratory source �simulated I0=7�106�. The simulated data
were generated from the same model parameters as used
above, except the lower total intensity. The results are shown
in Fig. 4. Considering the reduced amount of data �qz
�0.4 Å−1� and the high noise level, the quality of the recon-
structed profile is still quite good. Even the positions of the
maxima and minima and thus also the bilayer thickness are
reproduced very well.

We emphasize that a stopping rule is an essential part of
the algorithm since the reconstructions deteriorate after a cer-
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FIG. 2. �Color online� Results from a reconstruction of simulated data assuming a synchrotron radiation beam intensity �I0=7�109

photons�. �Top left� Several electron density profiles are shown: The original model used for data simulation �dashed line, blue�, resembling
a phospholipid bilayer on a solid silicon support, furthermore the initial guess for the reconstruction �dashed-dotted line, green�. While for
one reconstructed profile �solid line, red� the algorithm was stopped according to the discrepancy principle after 9 iterations, for the other
reconstruction �dotted line, black� it was continued for illustrative reasons up to iteration 20. Obviously, overfitting leads to unphysical
oscillations in the profile here. The shaded area marks the interval �� ,��, in which the initial profile was assumed to be a correct
representation of the true one. �Top right� Reflectivity curves corresponding to profiles on the left, normalized by Fresnel reflectivity, i.e., the
simulated data points with added noise �circles with error bars, black�, the simulated reflectivity based on the same model, but without added
noise �dashed line, blue� and the reconstruction after 9 iterations, obtained according to the discrepancy principle �solid line, red�. �Center
right� Residuals of the reconstructed reflectivity, normalized to the expectation value of the simulated errors. The majority of points lies
within the error bars. �Bottom left� Misfit ��k� /��1� of the real space profile at iteration k with the original model, normalized for clarity to the
misfit of the initial profile. Here ��k� is defined as ��k�= ���k�−�model�2, where �model denotes the original model. �Bottom right� Data misfit
�F���k��−y	�Y

2. The misfit after iteration 9 is about 2.6, representing a good fit to the data.
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tain number of iterations. �The best fit in q space does often,
but not necessarily correspond to the most accurate profile
reconstruction.� In Figs. 4 and 2 the discrepancy principle
always selected close-to-optimal stopping index as expected
from theory �29�. The value of the stopping parameter � must
be chosen �2, otherwise the Newton iteration may never
terminate or the data may be overfitted leading to oscillations
in the reconstructed profile as shown in Fig. 2 �top left�.

Two other important parameters are the support length a
and the sampling width a /n of the reconstructed profile in
real space. We found that it is advisable to choose a so that
�a−A� /A
0.2, where A is the true support, in order to yield
good results. As discussed in Sec. III n should be chosen so
that aqmax /n
1. In our experiments aqmax /n
0.25 was
sufficient, the resulting profiles are quite stable against a

further increase of n. However, increasing n might increase
the accuracy of the profile reconstruction.

The reconstructions with simulated data discussed so far
may give an idea of the minimum quality of the reflectivity
data and the necessary a priori knowledge of the density
profile for the regularization technique to yield reliable and
good results. In the following, we will compare the algorithm
to a published inversion routine named MOTOFIT �30�, which
is based on a matrix method, i.e., a dynamic description of
reflectivity. Beforehand, a remark about the different existing
profile modeling approaches used for reflectivity inversion
may be in order. At least two different techniques are pres-
ently used: While in the first approach a limited number of
boxes or a repeating box pattern is applied to describe physi-
cally distinguished layers �5�, in a second approach, the tran-
sition to a very large number of boxes is made, i.e., the
transition to a sampling description of the electron density
profile �31,32�. Each approach can be applied within the
framework of either the full dynamic or the kinematic theory.
As the scheme presented here uses a large number of sam-
pling points to describe the density profile, it clearly belongs
to the latter so-called “free-form methods.”

The results of the comparison of the regularization
scheme and the genetic algorithm are shown in Fig. 5. The
data used for reconstruction here was simulated on the basis
of the same original model profile as used before, i.e., a lipid
bilayer on a solid support. In performing the comparison of
the different methods, we aimed at greatest possible objec-
tivity: To this end, a density model was generated in
MOTOFIT with the same support length as used for the recon-
struction by regularization �a=100 Å�. The support interval
was divided into 18 layers of fixed widths to keep the num-
ber of free parameters low, but yet to achieve a free-form
description of the density rather than a traditional box-model
description. This would need much more a priori informa-
tion to converge due to the reduced variability in profiles,
which can be described by the model. The density profiles
used as an initial guess were the same in both reconstruction
schemes. As visible in Fig. 5 �top left�, the reconstruction by
the genetic algorithm differs substantially from the true
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corresponding to the true gradient in the initial profile is marked by
an arrow and corresponds to the fit result presented in Fig. 2. �Bot-
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FIG. 4. �Color online� Results from a recon-
struction of simulated data assuming a laboratory
source beam intensity �I0=7�106 photons�. For
nomenclature refer to Fig. 2.
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profile, while the regularization scheme succeeds to provide
a very accurate representation of the true model here. It is
emphasized that the genetic algorithm—due to its nondeter-
ministic nature—may lead to better profiles by evaluating
even the same start parameters many times. Furthermore the
reconstruction might improve by increasing the number of
sampling points in the profile description, which however
substantially increases computation time.

Summarizing, it may be concluded that the presented re-
construction scheme can be advantageous over or comple-
ment existing free-form approaches in some respects and
situations: Results are produced within seconds, so that ad-
justments in the initial parameters can be performed very
effectively. Furthermore, the amount of necessary a priori
information is very low in many cases, e.g., no lower and
upper limits for fit parameters have to be provided as it was
also the case for the genetic-algorithm example presented
here.

To give a last example, the algorithm was applied to ex-
perimental data obtained from reflectivity measurements of
supported di-palmitoyl-phosphatidyl-choline �DPPC� mono-
layers on a hydrophobized silicon support �7�. The data were
collected at the undulator beamline ID1 at the European Syn-
chrotron Radiation Facility in Grenoble, France. During the
preparation procedure the silicon wafer was first silanized by
coverage with a covalently bound hydrocarbon layer of
octadecyl-tri-chloro-silane �OTS�. Second, a monolayer of
DPPC was added by vesicle fusion. The data have then been
analyzed by fitting the parameters of a box-model �3� with

six boxes. In the nomenclature described before, this is a
“conventional” box model, where usually each box can be
identified with a part in the experimental system. Here, this
result only serves as a reference for the reconstruction based
on the regularization technique. The reference fit presented
here was generated by successive runs of a genetic, global
optimization technique and a deterministic, local optimiza-
tion scheme, with many manual adjustments of the fit results,
including a considerable degree of physical knowledge into
the reconstruction.

The reconstruction shown in Fig. 6 was generated from an
initial guess with a minimum amount of a priori knowledge
about the profile. Just the density difference �� of the sub-
strate and the bulk phase as well as an estimated representa-
tion of the native oxide layer on the silicon substrate were
included into the initial profile. Obviously, the main features
of the profile �DPPC headgroup region, hydrocarbon core
region� are reproduced in the reconstruction very well. There
are only minor differences between the profiles generated by
regularization and with the help of the box model, especially
in the hydrocarbon region of the OTS layer. Given the poor
initial guess and the complicated and time-consuming proce-
dure that led to the box model fit, the performance of the
regularization technique in this case is remarkably good. In
addition, it is pointed out that the true profile cannot be
known here with absolute accuracy as the data have been
collected experimentally, so that the box model reference
also has some uncertainty.
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FIG. 5. �Color online� Comparison of the regularization method with a reconstruction scheme based on a genetic algorithm �MOTOFIT�.
�Top left� Several density profiles are shown, more importantly �i� the reconstructed density profile resulting from the regularization scheme
with abort due to the discrepancy principle �solid line, red�, and �ii� reconstruction by application of a genetic algorithm in MOTOFIT �solid
line, cyan�. In addition, the profile used as the start profile for both reconstruction schemes is shown �“initial guess,” dashed-dotted line,
green�. Finally, the profile used for simulation of the data with added noise, i.e., the “true” solution is shown �“original model,” dashed line,
blue�. �Top right� Reflectivity curves—not normalized to Fresnel reflectivity here—corresponding to profiles on the left, i.e., simulated data
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Residuals of reconstructed reflectivity curve by regularization with respect to the theoretical reflectivity curve without added noise.
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VI. DISCUSSION

We have presented an iterative method for the reconstruc-
tion of a refractive index profile from phaseless reflectivity
measurements, which is more flexible in handling incom-
plete data and valuable a priori information on the profile
and the covariance structure of the noise than reconstruction
methods based on explicit inversion formulas �19,21,22�. In
particular, bounded and nonequidistant grids of q values,
varying uncertainties of the measured values, and a priori
information on parts of the profile can be incorporated in the
algorithm in a natural way. The convergence is very fast,
usually a reconstruction takes only a few seconds on a stan-
dard desktop PC.

As a main disadvantage of our method we mention that it
requires a sufficiently good initial guess. However, the physi-
cal knowledge about the sample is usually good enough to
give a more than sufficient initial guess. In our numerical
experiments the incorporation of a priori information on the

behavior of the solution in a small interval was always suf-
ficient.

As opposed to widely used fitting techniques, our algo-
rithm can in principle reconstruct arbitrary profiles and does
not use the assumption that the unknown profile can be de-
scribed by a small number of parameters in a box model.
Moreover, the speed of convergence is much faster than for
global optimization techniques. The necessary condition that
at least part of the profile is known at the level of a good
guess, is given in most practical cases, where thin layers are
deposited or adsorb to a generally well-known substrate.

ACKNOWLEDGMENTS

We would like to thank Professor Rainer Kress for helpful
discussions. The support of the DFG/SFB 755 Nanoscale
Photonic Imaging is gratefully acknowledged. Moreover, the
ESRF is acknowledged for beamtime, Peter Boesecke and
Hartmut Metzger from ID1 are thanked for their support dur-
ing the beamtime.

�1� J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray
Physics �Wiley, Chichester, 2001�.

�2� M. Tolan, X-ray Scattering from Soft-Matter Thin Films,
Springer Tracts in Modern Physics, Vol. 149 �Springer, New
York, 1999�.

�3� T. P. Russell, Mater. Sci. Rep. 5, 171 �1990�.
�4� A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J.

Als-Nielsen, Phys. Rev. A 38, 2457 �1988�.
�5� C. E. Miller, J. Majewski, T. Gog, and T. L. Kuhl, Phys. Rev.

Lett. 94, 238104 �2005�.
�6� E. Novakova, K. Giewekemeyer, and T. Salditt, Phys. Rev. E

74, 051911 �2006�.
�7� K. Giewekemeyer and T. Salditt, Europhys. Lett. 79, 18003

�2007�.

�8� L. G. Parratt, Phys. Rev. 95, 359 �1954�.
�9� I. M. Tidswell, B. M. Ocko, P. S. Pershan, S. R. Wasserman, G.

M. Whitesides, and J. D. Axe, Phys. Rev. B 41, 1111 �1990�.
�10� A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-

Nielsen, and J. Bohr, Phys. Rev. Lett. 54, 114 �1985�.
�11� V. Bargmann, Rev. Mod. Phys. 21, 488 �1949�.
�12� M. Braun, S. A. Sofianos, and R. Lipperheide, Inverse Probl.

11, L1 �1995�.
�13� K. Chadan and P. Sabatier, Inverse Problems in Quantum Scat-

tering Theory �Springer, Berlin, 1989�.
�14� Z. S. Agranovich and V. A. Marchenko, The Inverse Problem

of Scattering Theory �Gordon and Breach, New York, 1963�.
�15� C. F. Majkrzak and N. F. Berk, Phys. Rev. B 58, 15416 �1998�.
�16� M. V. Klibanov, P. E. Sacks, and A. V. Tikhonravov, Inverse

z [Å]

ρ e(z
)

[e
- /Å

3 ]

-20 0 20 40 60 80
0.2

0.3

0.4

0.5

0.6

0.7
Reconstruction
Box model fit
Initial guess
Known interval

0 0.2 0.4 0.6
0

0.5

1

1.5

2

q [Å-1]
R

(q
)/

R
F(q

)

Reconstruction
Experimental data
Box model fit

0 0.2 0.4 0.6
-5

0

5

q [Å-1]

[y
jδ -r

(q
j)]

/δ
j

0 2 4 6 8
10

0

10
2

10
4

Newton-CG-Iteration

||F
(φ

(k
) )

-
yδ || Y2

FIG. 6. �Color online� �Top left� reconstructed
profile for a DPPC monolayer on OTS-silicon
support �solid line�. For comparison, a box-model
fit to the same data is shown �dashed-dotted line�,
as well as the initial guess for the reconstruction
�dotted line�. �Top right� experimental data with
errors and reflectivity simulations corresponding
to the profiles shown on the left. �Bottom left�
Misfit �F���k��−y	�Y

2. �Bottom right� Residuals
for the reconstructed profile.

HOHAGE, GIEWEKEMEYER, AND SALDITT PHYSICAL REVIEW E 77, 051604 �2008�

051604-8



Probl. 11, 1 �1995�.
�17� E. Wolf, Proc. Phys. Soc. London 80, 1269 �1962�.
�18� F. N. C. P. V. Petrashen, Sov. Phys. Dokl. 34, 1269 �1989�.
�19� W. L. Clinton, Phys. Rev. B 48, 1 �1993�.
�20� M. V. Klibanov and P. E. Sacks, J. Math. Phys. 33, 3813

�1992�.
�21� M. V. Klibanov and P. E. Sacks, J. Comput. Phys. 112, 273

�1994�.
�22� G. Reiss and R. Lipperheide, Phys. Rev. B 53, 8157 �1996�.
�23� K.-M. Zimmermann, M. Tolan, R. Weber, J. Stettner, A. K.

Doerr, and W. Press, Phys. Rev. B 62, 10377 �2000�.
�24� J. Strzalka, E. DiMasi, I. Kuzmenko, T. Gog, and J. K. Blasie,

Phys. Rev. E 70, 051603 �2004�.
�25� M. V. Klibanov, Adv. Differ. Equ. 22, 1232 �1986�.
�26� B. Blaschke, H. W. Engl, W. Grever, and M. V. Klibanov,

Nonlinear World 3, 771 �1996�.
�27� H. W. Engl, M. Hanke, and A. Neubauer, Regularization of

Inverse Problems �Kluwer Academic Publisher, Dordrecht,
1996�.

�28� J. P. Kaipio and E. Somersalo, Statistical and Computational
Inverse Problems �Springer, New York, 2004�.

�29� M. Hanke, Numer. Funct. Anal. Optim. 18, 971 �1997�.
�30� A. Nelson, J. Appl. Crystallogr. 39, 273 �2006�.
�31� E. Politsch and G. Cevc, J. Appl. Crystallogr. 35, 347 �2002�.
�32� C. F. Laub and T. L. Kuhl, J. Chem. Phys. 125, 244702

�2006�.
�33� MATLAB is a registered trademark of The MathWorks, Inc.
�34� See EPAPS Document No. E-PLEEE8-77-120805 for open

source MATLAB code of the reconstruction algorithm, and plots
of all reconstructed profiles. The MATLAB code is free to be
used and modified, if the source is cited. For more information
on EPAPS, see http://www.aip.org/pubservs/epaps.html

�35� It is assumed that this number of photons is collected within a
reasonable period of time, i.e., 1 s.

ITERATIVE RECONSTRUCTION OF A REFRACTIVE- … PHYSICAL REVIEW E 77, 051604 �2008�

051604-9


